Nemesis: \qquad
Brims virtu
工. Fractions.
A. Simplify all Sums and Differences.

$$
\begin{aligned}
& \frac{7}{12}+\frac{1}{12}=-\div-=\square \\
& 1-\frac{2}{10}=-\div-\square=-
\end{aligned}
$$

B. Find the Perimeter. Simplify.

$$
\begin{aligned}
& q_{1}-\cdots \\
& 6, \ldots, \\
& \frac{7}{9}: \square=- \\
& +\frac{5}{6} \cdot \square=\square \\
& 15,-1-\cdots \\
& 10, \ldots 1-1, \ldots \\
& \frac{14}{15} \cdot \square= \\
& -\frac{3}{10}: \Omega=- \\
& 3 \\
& -2 \frac{1}{4}
\end{aligned}
$$

C. Multiply. Simplify all Products.

$$
\frac{3}{8} \cdot \frac{4}{9}=\frac{12}{72} \div \frac{12}{12}=\frac{1}{6}
$$

$$
\begin{aligned}
& \frac{7}{10} \cdot \frac{5}{14}= \\
& \frac{1}{6} \cdot \frac{15}{16}= \\
& \frac{3}{4} \cdot 7=
\end{aligned}
$$

D. Dividing Fractions, NOT!

$$
\begin{aligned}
& \text { Bream } \\
& \frac{2}{3} \div \frac{8}{9}=\frac{2}{3} \times \frac{9}{8}=\frac{18}{24} \div \frac{6}{6}=\frac{3}{4}
\end{aligned}
$$

\bigcirc

$$
\frac{2}{3} \div \frac{8}{9}=\frac{12 \times \frac{9}{8}}{1}=\frac{3}{4}
$$

$$
\frac{4}{5} \div \frac{16}{25}=
$$

$$
\frac{7}{9} \div \frac{2}{3}=
$$

$$
\begin{align*}
& \frac{3}{8} \div \frac{9}{24}= \\
& \frac{1}{2} \div \frac{9}{10}= \\
& \frac{7}{12} \div \frac{14}{15}= \\
& \frac{9}{16} \div \frac{3}{4}=
\end{align*}
$$

II. Integers.
A. Write the addition problem represented by the picture. Solve.
$\oplus \oplus \oplus$
Θ
$\Theta \ominus \Theta \Theta-+\quad+=$ \qquad
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\Theta \Theta \Theta$

$$
\ldots+\ldots=
$$

\qquad
$\oplus \oplus \oplus \oplus \oplus$
$\Theta \Theta \Theta \Theta \Theta \quad+\quad=$ \qquad
$\oplus \oplus \oplus \oplus$
$\Theta \Theta \Theta \Theta \Theta \Theta$
\qquad
\qquad
B. Add.

$$
\begin{array}{ll}
-7+2= & 8+(-3)= \\
-12+(-4)= & -9+15= \\
-6+(-5)= & 12+(-14)=
\end{array}
$$

C. Subtract... NOT!

Example: $-8-(-4)=\frac{-8}{\swarrow}+\frac{4}{\text { Keep Change Change }}$

$$
\begin{aligned}
& 10-(-5)=\ldots-\ldots= \\
& -1-3=-\quad= \\
& 5-8=-\quad= \\
& -7-9=-\quad=
\end{aligned}
$$

III. Use the Line Plot to Answer. Number of Blue $m+m s$ in a bag.

How many bags had 20 or fewer blue $m_{a} m_{s}$?

How many bags had more than 48 blue $m+m_{s}$?
Find the Landmarks (except for the Mean.).
minimum: \qquad models): \qquad
maximum: \qquad
range: \qquad median: \qquad
IV. Multiplying and Dividing Integers. Remember Your Rules!
Positive times Positive $=$ Positive $(t) \div(t)=(t)$
Negative times Negative $=$ Positive $(-) \div(-)=(t)$
OB 3.
Positive times Negative $=$ Negative $(t) \div(-)=(-)$
Negative times Positive $=$ Negative $(-) \div(t)=(-)$

$$
\begin{aligned}
& -8 \cdot(-3)=[-18 \div(-6)= \\
& \frac{-72}{9}=-\quad-7=-\quad \frac{100}{-4}= \\
& \frac{-84}{-12}=-\quad-8 \cdot 9=
\end{aligned}
$$

I. Solve for the unknown.

Busing 30:

$$
-7 a=-56 \quad a=8
$$

$$
\frac{-36}{x}=4 x=-9
$$

Think: $\frac{-36}{4}$
む
or
Think:

$$
\frac{-7}{-7}=\frac{-56}{-7}
$$

I

$$
\begin{aligned}
& \frac{b}{-5}=10 \text { Think: } 10 .-5 \\
& b=-50
\end{aligned}
$$

$$
\begin{aligned}
& \frac{c}{-9}=-7 \quad c= \\
& 5 w=-45 \quad w= \\
& \frac{-72}{d}=-4 \quad d=
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{-56}{u}=-7 & u= \\
12 b=-108 & b= \\
-6 a=-96 & a= \\
\frac{e}{-4}=16 & e= \\
-10 f=-70 \quad f= & \frac{q}{3}=-12 \quad q= \\
\frac{42}{b}=7 \quad b=-\quad \frac{c}{-5}=15 \quad c=- \\
=\frac{9}{-9}=-9 \quad g= & -2 z=36 \quad z=
\end{array}
$$

II. Percents.
A. Rewrite each fraction as a percent. $\frac{1}{2}=$ \qquad $\frac{1}{4}=$ \qquad $\frac{3}{4}=$ \qquad

$$
\frac{1}{8}=
$$

\qquad $\frac{3}{8}=$ \qquad $\frac{5}{8}=$ \qquad

$$
\frac{7}{8}=
$$

\qquad $\frac{1}{5}=$ \qquad

$$
\frac{7}{25}=
$$

\qquad

$$
\frac{1}{3}=
$$

\qquad $\frac{2}{3}=$ \qquad $\frac{4}{5}=$ \qquad

$$
\frac{1}{6}=
$$

\qquad

$$
\frac{5}{6}=
$$

\qquad

$$
\frac{3}{5}=
$$

\qquad

$$
\frac{5}{9}=\quad \frac{39}{50}=\quad \frac{7}{11}=
$$

B. $\sin 3 \boldsymbol{n} 33$.

$$
\begin{aligned}
50 \% \text { of } 48= & 66 \frac{2}{3} \% \text { of } 36= \\
25 \% \text { of } 48= & 33 \frac{1}{3} \% \text { of } 36= \\
12 \frac{1}{2} \% \text { of } 48= & 16 \frac{2}{3} \% \text { of } 36=
\end{aligned}
$$

You spend \$89.54 for dinner (for you and a friend). You decided to leave a 20% tip. How much would you leave in all? To make things easier you rounded $\$ 89.54$ to the nearest 10 .

On July $18^{\text {th }}$ it snowed 28 inches and on July 19 th it snowed 7 inches. (This is in the Andes in Chilie U). What was the percent of change?
VII. Find the Area.

6.4 in.

IIII. Exponential Notation.

$$
\begin{aligned}
& 7^{2}=\quad 10^{0}=\quad 3^{4}= \\
& 9^{3}=\quad 6^{2}=\quad 12^{1}= \\
& 2^{5}=\quad 5^{3}=\quad 8^{2}= \\
& 10^{6}=\quad 3^{3}=\quad 4^{2}= \\
& x^{2}=81 \quad x=\quad b^{2}=121= \\
& c^{2}=9 \quad c= \\
& d^{2}=49= \\
& x^{2}=144 \quad x= \\
& v^{2}=289 \quad v= \\
& \sqrt{196} \quad \sqrt{100}=
\end{aligned}
$$

IX. Math Vocabulary.
A. Fill-in the blanks. " In know ...I I bet that you
were expecting ". were expecting

The \qquad of 8 are $1,2,4$ and 8 .

12 is the \qquad of 20 and 8.

24 is the \qquad of 15 and 9 .

The \qquad of 7 are $7,14,21,28 \ldots$

The \qquad of 42 and 7 is 6 .

18 is the \qquad of 2 and 9 .
B. Answer.

What is the difference of seven squared and three cubed?
\qquad
What is the quotient of 12 squared and 2 cubed?
\qquad
What is 15 more than the quotient of 48 and 6? \qquad
What is 24 fewer than the product of 10 and 13?
\qquad
C. Logical Reasoning.

	2	9	16	8	7
Adam					
Diane					
Jonathan					
Danielle					
Karina					

Nl 9 o The girts whose names begin with o the same first letter favorite numbers are prime numbers.
(2000.3 5 : The boys favorite numbers are $\begin{aligned} & \text { square numbers. }\end{aligned}$

Of: SO The students with the same number of letters in their names favorite numbers are even numbers.
D. Answer.

Which number is the product of 8 and 4, tripled?
X. Solve and Check.

Brennan 0 B

$$
\begin{gathered}
3 x-18=9 \\
\frac{+18}{\frac{3 x}{3}}=\frac{27}{3} \\
x=9
\end{gathered}
$$

$$
\begin{array}{r}
3(9)-18=9 \\
27-18=9
\end{array}
$$

$$
6 x-36=42
$$

Check

$$
4 x+12=36
$$

Check

$$
7 x-35=21
$$

check

$$
12 x+2=74
$$

Check

$$
3 x-27=18
$$

Check

Check

$$
\frac{3}{4} x+6=18
$$

$\frac{2}{3} x-6=8 \quad$ check

$$
\frac{5}{6} x-7=3
$$

Check

$$
x-\frac{2}{3}=\frac{1}{6}
$$

$$
x-\frac{3}{8}=\frac{7}{12}
$$

$$
x-\frac{5}{6}=\frac{9}{10}
$$

$$
\begin{array}{ll}
\frac{x}{8}=\frac{27}{72} & x= \\
\frac{63}{91}=\frac{9}{b} & b= \\
\frac{4}{c}=\frac{16}{28} & c=
\end{array}
$$

II. Think About It and Answer.

The area of the rectangle is $48 \mathrm{~cm}^{2}$. The perimeter is 38 cm . How long is each side?

$\overline{N A}:$ \qquad $\overline{A T}:$ \qquad $\overline{T S}$: \qquad $\overline{S N}$: \qquad

